1 ) 开头车羊问题的数学解释
相信很多人没有看完电影,就开始思考本片开头提到的那个概率问题。的确,赌博其实就是一次次概率试验,尤其是比大小点这类相对需要更少技巧的项目。
片中涉及的那个车和羊的问题也被称作蒙提霍尔问题(Monty Hall Problem)或三门问题,是一个源自博弈论的数学游戏问题,大致出自美国的电视游戏节目“Let's Make a Deal”。问题的名字来自该节目的主持人蒙提·霍尔(Monty Hall)。
这个游戏的玩法是:参赛者会看见三扇关闭了的门,其中一扇的后面有一辆汽车,选中后面有车的那扇门就可以赢得该汽车,而另外两扇门后面则各藏有一只山羊。当参赛者选定了一扇门,但未去开启它的时候,节目主持人会开启剩下两扇门的其中一扇,露出其中一只山羊。主持人其后会问参赛者要不要换另一扇仍然关上的门。
明确的限制条件如下:
参赛者在三扇门中挑选一扇。他并不知道内里有什么。
主持人知道每扇门后面有什么。
主持人必须开启剩下的其中一扇门,并且必须提供换门的机会。
主持人永远都会挑一扇有山羊的门。
如果参赛者挑了一扇有山羊的门,主持人必须挑另一扇有山羊的门。
如果参赛者挑了一扇有汽车的门,主持人随机在另外两扇门中挑一扇有山羊的门。
参赛者会被问是否保持他的原来选择,还是转而选择剩下的那一道门。
百度给出的问题的答案是可以:当参赛者转向另一扇门而不是继续维持原先的选择时,赢得汽车的机会将会加倍。
解释如下:
有三种可能的情况,全部都有相等的可能性(1/3)︰
参赛者挑山羊一号,主持人挑山羊二号。转换将赢得汽车。
参赛者挑山羊二号,主持人挑山羊一号。转换将赢得汽车。
参赛者挑汽车,主持人挑两头山羊的任何一头。转换将失败。
在头两种情况,参赛者可以通过转换选择而赢得汽车。第三种情况是唯一一种参赛者通过保持原来选择而赢的情况。因为三种情况中有两种是通过转换选择而赢的,所以通过转换选择而赢的概率是2/3。
如果没有最初选择,或者如果主持人随便打开一扇门,又或者如果主持人只会在参赛者作出某些选择时才会问是否转换选择的话,问题都将会变得不一样。例如,如果主持人先从两只山羊中剔除其中一只,然后才叫参赛者作出选择的话,选中的机会将会是1/2。
另一种解答是假设你永远都会转换选择,这时赢的唯一可能性就是选一扇没有车的门,因为主持人其后必定会开启另外一扇有山羊的门,消除了转换选择后选到另外一只羊的可能性。因为门的总数是三扇,有山羊的门的总数是两扇,所以转换选择而赢得汽车的概率是2/3,与初次选择时选中有山羊的门的概率一样。
----------------------------------------------------------------------------------------------------------------------
用概率论计算如下:
因为那一辆汽车在三个门后面的机率相等,所以可以算作古典概率。
假设A1代表车在1号门后面
A2代表车在2号门后面
A3代表车在3号门后面
B1代表不交换选择到车
B2代表交换后选择到车
则通过题干可得
P(A1)=1/3 P(A2)=1/3 P(A3)=1/3
当主持人打开一扇有羊的门时,剩下两面门后面有车的纪律均等
P(B1)=1/2 P(B2)=1/2
由全概率公式
P(B1)=P(B1|A1)P(A1)+P(B1|A2)P(A2)+P(B1|A3)P(A3)=1/2
P(B2)=P(B2|A1)P(A1)+P(B2|A2)P(A2)+P(B2|A3)P(A3)=1/2
故无论是否转向另一扇门,最后的几率都是50% (两扇门,一扇后面是羊,一扇后面是车,随机选择)
-----------------------------------------------------------------------------------------------------------------------
那么百度上的解释有什么问题呢?
参赛者挑山羊一号,主持人挑山羊二号。转换将赢得汽车。
参赛者挑山羊二号,主持人挑山羊一号。转换将赢得汽车。
参赛者挑汽车,主持人挑两头山羊的任何一头。转换将失败。
在头两种情况,参赛者可以通过转换选择而赢得汽车。第三种情况是唯一一种参赛者通过保持原来选择而赢的情况。因为三种情况中有两种是通过转换选择而赢的,所以通过转换选择而赢的概率是2/3。
问题在于第三种情况下,主持人分别选择两头羊中的任何一头,其实是2种情况。所以整体算来一共是四种情况
参赛者挑山羊一号,主持人挑山羊二号。转换将赢得汽车。
参赛者挑山羊二号,主持人挑山羊一号。转换将赢得汽车。
参赛者挑汽车,主持人挑山羊一号。转换将失败。
参赛者挑汽车,主持人挑山羊二号。转换将失败。
这样,最终是否转换的结果就是一样的。
回到问题本身,我们使用了概率论中的古典概型。
它的特点如下:
1.试验的样本空间只包含有限个元素
2.试验中每个基本事件发生的可能性相同
而百度的算法中,各基本元素发生的可能性是不同的。这就是错误的来源。
2 ) [每日一碟No.2]Robert Luketic《决胜21点》
DVD信息:4S,SONY蓝光转D9
花絮:无
首先,这素一张裸碟,其次,买碟的时候我对这部片子完全没有概念。上网翻了资料才知道这是一度的票房大热门。说实话我对商业片不敏感,对明星同样不敏感,大概能认出来的不超过20个——不包括本片里的凯文·斯派西。好吧,我想说的是这部片子完全不用动脑子,但是还是要动脑子的……不过鉴于有诸多影评热衷于讨论影片中的数学问题,我这个高中数学都搞不定的人就不多嘴了。
斯派西的片子此前看过《Shipping News》,《美国美人》买了4年多都没看。其他的小朋友们更别说了。觉得影片的剧作有点意思,首先,这个故事的原型显然是《化身博士》,双重生活和双重身份,以及最后必然的毁灭结局——这个片子里毁灭的是教授。其次,片子真正的翻盘之处在于主角小本的那两个胖子兄弟,而不是在于诸如硬币巧克力或者设局,导演在这儿让我小小地享受了一下。
另外要说的是,这部片子实在是很宅。套用著名编辑黑小猫的说法,宅是“卖弄大家都不愿意去懂的东西”,至少我对柯西的八卦没有任何兴趣——嗯高数也是我的惨痛回忆之一,这是数学宅男们的密码。但是这一处宅点让第二场教室的戏变得很有张力。另外,Jim Sturgess长得的确像个俄国人,他的那个假名,弗拉基米尔什么的,如果真的是柯西的学生,那就太有趣了……
出字幕的那个镜头很有趣。从模型飞机大航拍转180度到一个跟拉,推测是两个镜头拼起来的。别的我还真想不到什么有意思的镜头了。就这样吧。
总评:
花絮:0
可看性:7
艺术性:0
延伸阅读:Ben Mezrich "Bringing Down the House: The Inside Story of Six M.I.T. Students Who Took Vegas for Millions"(原著。囧,当当竟然有卖的……)
3 ) 专业角度讲解电影21点叻算牌原理和算牌错误
影片《玩转21点》从题材上来说还是很吸引人叻,我自己有段时间也研究过21点,所以我要从专业角度给你讲解影片中关于算牌叻原理以及影片中关于算牌叻一些错误。
为啥子21点可以算牌呢?21点中一局结束后,发过叻牌将不再被使用,所以前面出现过叻牌对后面叻牌产生影响,也就是条件概率叻问题。
21点理有两种方法,算十法和高低法。影片中讲述叻是高低法(High-Low),高低法是由算十法演变过来叻。
高低法中,讲2,3,4,5,6记作+1点,7,8,9算作0点(也就是说,对点数不产生影响),10,J,Q,K,A算作-1点。当出现一张2-6其中叻牌,点数增加1;反之,出现10,J,Q,K,A中一张牌,点数减少1.
点数越大,对玩家叻优势越大,也就是说,玩家获胜叻概率越大。点数每增加一点,玩家获胜叻概率就增加0.5%。
在21点中,毫无疑问,庄家是占优势叻,赌场显然不可能让你赢钱噻。但是赌场叻优势到底有好大捏??在你完全运用基本策略(Basic Stratigy)最大限度叻把庄家叻优势降低到0.5%。
基本策略这个词,影片中叻女主角跟男主角在衣店叻时候提到过。所以,玩家优势=(点数-1)*0.5%,点数越高,玩家优势越大,应该下更大叻注
那么,在点数确定叻情况下,又应该下多大叻注呢??这里有个下注方法:
单次下注=本钱*玩家优势
现在,我要讲哈影片中关于算牌叻一些错误
首先,影片中没有考虑切牌叻问题。在赌场中,发牌员的牌有很多副牌,当牌发到一定数量叻时候,发牌员会切牌,也就是说剩下叻牌讲不再发,而重新启用新牌。这种情况下,点数将回归到0点,而算牌手不得不重新开始计点数。当点数足够大时,算牌手再下大注。然而,影片中完全没有考虑这个问题,你看到男主角坐上一张座子就没离开过。
其次,影片中没有考虑剩余牌叻数量。通过前面讲叻算牌法,玩家可以计算点数,从而计算获胜概率。然而,影片没有考虑平均点数这个概念。在点数一定叻情况下,剩余叻牌越多,平均点数越小,玩家实际上叻优势越小。尽管点数确实很大,然而如果剩余叻牌很多叻话,相当于点数被太多叻牌稀释掉咯。如果算牌手不考虑平均点数叻话,很可能被点数所误导,误以为获胜概率大,下大注,然后输钱。
还有最后一个问题,算牌叻利润空间其实是很小叻,很难让算牌手过上影片中那样奢侈叻生活叻。因为即使玩家占优势,也不代表玩家就一定赢钱。举个例子,如果点数为10,玩家叻优势就为4.5%,也就是获胜叻概率比50%多一点。在这样叻优势下,你每次下注100块,玩上一百次才能获利450块。而显然,玩上一百次则要碰到很多次切牌,很多次叻重新计算点数,增加咯算牌手叻困难。
4 ) 只是算牌,不是赌博
某本期货的书里推荐的这部影片,看完确实有很多共鸣。21点里的算牌跟操盘手的交易系统,有相似的地方。都是基于概率,都有规则需要遵守。当一下子累积到了那么多财富之后,会不会迷失自己?还记不记得当初为什么要进入“赌场”,能不能急流勇退?
110821下外公家
5 ) 关于门,汽车,羊的延伸
关于电影里那个有名的概率论的问题,之所以很多人认为是错的,那是因为被自己的直觉误导了。
其实我们可以来计算一下,参赛者在主持人第二次询问是“坚持自己的选择”还是“更换选择”两种情况的胜率。
设事件“不换”胜率为P1,事件“更换”为P2。
“不换”获胜的条件很简单,就是第一次就抽中羊,所以P1=1/3=33%。
“更换”获胜的条件也很简单就是第一次抽中羊,因为主持人会打开另一扇后面是羊的门,所以就只剩下车子了。所以第一次无论抽中哪只羊都无所谓,P2=2/3=66.7%。
--------------------------
以上的计算人家已经算过了,我们来算点不一样的。
现在我们给题目加上一只羊,也就是一共有4扇门,后面是一辆车,三只羊。主持人同样在参赛者选择一扇门之后,打开一扇有羊的门,再问参赛者是坚持“不换”,还是“更换”。同样设为概率P1、P2。
P1=1/4----(第一次抽中车)
P2=3/4(第一次抽中羊)*1/2(在剩下的两扇门里选中羊)=3/8
至于为什么剩下两扇门应该不用解释吧,第一次选了一扇,主持人排除了一扇,所以剩下4-2=2扇。
P2>P1,所以应该“更换”。
----------------------------
如果再加一只羊,也就是1车,4羊。
P1=1/5=3/15
P2=4/5*1/3=4/15
P2>P1,所以还是要”更换“
-------------------------
.
.
.
.
.
.
加了很多很多羊之后,总共有N扇门,其中车1辆,羊N-1只。
P1=1/N
P2=(N-1)/N * 1/(N-2)=(N-1)/N(N-2)
P2-P1=(N-1)/N(N-2)-1/N=(N-1)/N(N-2)-(N-2)/N(N-2)=1/N(N-2)>0
所以P2>P1,需要”更换“。
-------------------------------------------
我已经很无聊了,有没有人在此基础上再加几辆车什么的!!!
6 ) 人生如戏,世事如牌
关于天才、斗智、冒险的题材,往往能吸引我这样平凡的人,无非是在安全、舒适的情况下就能体会别人的成功和刺激,这种有点自欺欺人的念头,会把影片原本励志的意图冲淡一些,好在看到用智慧掌控自己的命运是件大快人心的事。 看这部电影才知道哈佛医学院需要30万美金的高昂学费,才知道优等生求学也会有麻烦,电影里的年轻人选择了拉斯维加斯的赌场,但凭的不是运气,是“数学”,那种看起来像是百战百胜、不劳而获的方法,很快叫人欲望膨胀,忘乎所以了。但赌博是危险的游戏,没有人能全身而退,这在几乎所有涉及该题材的电影里得到证实,所以在一切看似完美的情况下突然就转折了,辉煌瞬间消失,从天堂直落地狱……好在我们的主人公是天才,天才总能找到转败为胜的关键,所以我们总能“意外”看到一个完美结局。 《玩转21点》作为商业片具有相当的娱乐性,没有叫人失望。只是对电影有两处稍微有点遗憾:1、 凯文史派西扮演的教授应该是集智慧之大成者,但后期表现出的贪婪和阴险有点太生硬、太突然了;2、年轻的男主角获得成功立即变得自负、情绪化而落入众叛亲离的境地,未免有落入俗套之嫌。
7 ) 车与羊三扇门概率问题的最简单解释
简单阐述一下问题:
一个游戏:有3扇关闭着的门,其中2扇门后面各有一只羊,另一扇门后面有一辆车。
参与者:一个游戏者和一个主持人。主持人事先知道各扇门后的物品,而游戏者不知道。
游戏目的:游戏者选择到车。
游戏过程:1、游戏者随机选定一扇门;2、在不打开此扇门的情况下,主持人打开另一扇有羊的门。3、此时面对剩下2扇门,游戏者有一次更改上次选择的机会。
问题是:游戏者是否应该改变上次的选择,以使选到车的概率较大?
答案:
不改变选择,得到车的概率是1/3。
改变选择,得到车的概率是2/3。
解释:
1、若想不改变选择选到车:
第一步:概率问题:
若不改变选择,要选到车,则游戏者必须第一次就选中车。此时选中车的概率是1/3(原理详见中学数学课本)。
第二步:必然问题:
因为游戏者不会改变选择,所以,之后主持人的任何行为——开门也好关门也好敲门也好摔门也好——都与游戏者最初做出的选择无关。
最终:概率还是1/3。
2、若改变选择选到车:
第一步:概率问题:
若要通过改变选择选到车,则游戏者必须第一次选中的是羊。此时选中羊的概率是2/3(原理详见中学数学课本)。
第二步:必然问题:
之后,主持人会打开另一扇有羊的门。此时游戏者面对剩下的2扇门,改变选择的方式只有一种,就是选上次没有选的那扇门。(这之中没有几分之几概率的存在。打个简单比方,一个包子和一个馒头放在你面前,你第一步先拿了个包子在手上;然后第二步我叫你“换一个拿”,显然你只能选剩下的那个馒头。在第二步中,你并没有选择包子或馒头的机会。)
最终:选到车的概率还是2/3。
--------------------------------------
这个问题很早以前看到过,当时算了好半天,现在却忘记了当时算的结果。今晚在豆瓣看到一些评论和讨论,总觉得都说的很复杂拖沓,说实话绕来绕去大多我都没怎么看明白。。于是自己静坐了一会想到了这样的一个理解方法。
标题中厚颜无耻的用了“最简单解释”几个字,这只是我能想到的最简单理解方法,大家若有更好的方法,也请提出,欢迎讨论。
要注意的是,这已经是一个有正确答案的题目了,对1/3和2/3答案有怀疑的各位童鞋,还是先去怀疑怀疑自己吧。
事情在自己脑海中想的很简单,化为文字就显得很臃肿拖沓了。短短的这么点字,花了20多分钟删删改改,力求简单明快,但比起思维的流畅还是差了很多。高考91分的语文成绩还是凸显了我语言表达的不足么-。-
似乎很久没有思考过这样的数学问题了,现在觉得脑子清爽很多。
最后,这电影我还没看呢,评价3星是因为,这是对整体评价影响程度最低的选择。
我说小吉啊~你能找個戲是不被人揍的么~= =不過在裏面還是各種帥啊~哎喲~青春柔弱大學生什麽的我最愛了~還是水嫩嫩的21年華啊~╮(╯▽╰)╭不過可能是惡老闆看多了有後遺症。一看見KevinSpacey我就想笑~泥煤的
偷拍揭秘年入500亿“地下赌场”,至今还在开遍全国吃“人血馒头”!https://www.bilibili.com/video/av83765790 → 年轻人千万别碰网贷,这些后果是你无法承受的!https://www.bilibili.com/video/av59094699 → 为什么千万别碰赌博?亲身经历为你揭秘赌博的本质:https://www.bilibili.com/video/av66463567 → 为此而观看《决胜21点》。→ 电影根据马恺文(Jeff Ma)真实故事改编,20世纪90年代他靠着如“英特尔芯片”一般神准的算牌能力,和班上一帮鬼才学生横扫美国各地赌城,狂捞了约1000万美元,各家“大出血”的赌场纷纷通过监视画面将这些算牌人的大头照存盘,建立一份黑名单。从此,马恺文等人成为美国境内近百家赌场“21点”牌桌的“拒绝往来户”。据马恺文介绍:“算牌只能提高3%的赢牌几率……却足以造成很大的差别。”-百度百科
坚持看完主要是为了故事本身.电影拍的有点烂.
骗中骗的故事总能给人带来惊喜。如果单就剧本而言,胜《钢铁侠》好多了!可见imdb上的评分是不能作为衡量影片好坏的依据的,只能参考。
佳构作品。情节的起承转合都太在意料之中,甚至最后的报复翻身都可想而知。女主角有点娜塔莉的影子,金黄头发十分好看。男主角性格欠妥,心智易摆。实非良配。
很简单,最后就是凯文被玩了,然后不用思考21点到底是怎么玩的,因为最后它什么也没讲。
赌场只让人输钱不让人赢钱,不知道真实情况是不是这样子,真是可恶啊!那个车和羊的选择,个人觉得是无聊了,无论是何种说法都是狗屁,因为概率论这玩意你没中那就是0,中了就是100%没有其他中间概率,概率论这玩意是一个人创造出来忽悠另一人的.
看着最烦的几个好莱坞新生代演员之一Jim Sturgess,还有那个啥海登克里斯滕森,要演技没演技,要内涵没内涵,长相光看着就觉得招人烦。
我原以为自己没看懂这部片子在讲什么,看了豆瓣评论后发现原来它什么都没讲。
男主长相介于诺顿、吉伦哈尔和托比马奎尔之间。萌!盖章认证的萌!
凯文史派西!你能不能正经点儿演个好人!= =!(男主像诺顿!迷倒。。。
没有永恒的朋友和排档,只有永恒的利益,这部影片再一次精辟地诠释了这个道理。什么欣赏、什么对手、什么朋友,在想得到的利益面前,一切都是浮云。当两厢利益发生冲突时,每个人的选择都是保护自己,也许残酷,但也真实。另外,赌的大忌是贪,这点屡试不爽。另外,男主很像《成长的烦恼》里的小本。
因为原型是亚裔,且长得不帅,所以剧组决定把男主变成白人,并且安排一了一个喜欢小偷小摸的猥琐亚裔角色
依旧很肤浅地为了主角的脸坚持给五星……为毛我就是觉得westerner比easterner散发的荷尔蒙多很多很多很多……噗……等等,擦下鼻血……
我觉得还蛮好看的,帅哥加美女强强组合“winner winner chicken dinner”
这个电影的评论是我见过的最学术的。所以从2星变成3星。
Winner Winner Chicken Dinner
宅男的价值观如何改变,喜剧结局.关于如何算牌纯粹是一种错误的关于几率观的普及,会让人感到不知所措的吧
自己的世界or现实的世界? self-recognition and self-losing.
Jim Sturgess拍前浪 Kevin Spacey死在沙滩上