寻找隐秘的维度

记录片美国2008

主演:Ralph Abraham  Loren Carpenter  本华·曼德博  

导演:Michael Schwarz  Bill Jersey  Dana Cartwright  

播放地址

 剧照

寻找隐秘的维度 剧照 NO.1寻找隐秘的维度 剧照 NO.2寻找隐秘的维度 剧照 NO.3寻找隐秘的维度 剧照 NO.4寻找隐秘的维度 剧照 NO.5寻找隐秘的维度 剧照 NO.6
更新时间:2023-09-16 14:54

详细剧情

  什么是电影特效,股票市场,和心脏病的共同点?它们连接了一个革命性的新的数学分支,改变了我们看世界,开辟了广阔的新领域,以科学的分析和理解。数学家们开发不规则碎片形是从单纯的好奇心到接触几乎每一个分科的理解,包括我们宇宙的命运。

 长篇影评

 1 ) 寻找隐藏的维度

曼德尔布洛特集

科赫雪花

分形应用

用于探知为何体积越大单位所需能量越少,即E=M的3/4方。

用于解决无线通讯中如蓝牙、无线通讯、wifi等需要单独频率但避免多个天线的应用

用于检测心脏健康。

三年前看过的纪录片,这是我——一个理科不好的同学对于自然科学最后的反扑,因为硬想要深刻所以觉得这部显得平淡,其实放开了心态看的话,就只要坐着感叹好美啊好美啊好奇妙啊就可以了,科学原理乃至现实应用不妨交给科学家们来做。

 2 ) everywhere

以分形理论来说,fractal could be found in everywhere

那么时候地球所在的太阳系甚至银河系也是茫茫宇宙的某个分形中的一只branch?

神奇

 3 ) Hunting The Hidden Dimension 观后感

The film is about fractal geometry. Someone calls fractal geometry 'the natural dynamics of everything' (a video title, 2011, available at //www.youtube.com/watch?v=yUM7e0tIFi0). Why? Because it explains the shapes of everything in the nature: why the British coastline looks like that, why mountains looks like that, why the trees look like that, why the vessels in the body look like that, ect., etc..

Fractal geometry was invented by Benoit Mandelbrot from 1950. In general, it is a combination of classical geometry (coined by Euclid) and algorithm. The most famous fractal - The Mandelbrot Set - derives from a circle and a generating function 'f(z) = z^2 + c'. (For more knowledge, visit http://mathworld.wolfram.com/MandelbrotSet.html)

In reflection, fractal geometry could help us to understand the underlying order governed by simple mathematical rules. According to this theory, there must be a rule that governs the formation of the nature and all the living things/creatures. Perhaps the rule is set by the God. God is simple, straightforward and God seems not encountered complex things, thus God create everything as they assumed to be. A significance of fractal geometry might be that it finds out the rules of the nature, which implies that the nature is possibly created and ruled by something. So far, we may easily shift our thoughts to another interesting invention in the 20th century - the Artifical Intelligence. With the emergence of computer, multiple complex things can be handled by computer programming. Some people may say, artificial intelligence is God. (see http://www.artificialintelligenceisgod.com/index3.html) If science explains the world created by God, then technology is the 'new God' that changes the existing world. Is it? If it is so, then there must be a number of Gods that mobilize the evolutions of all things in our history. On the other hand, however, like technology is rooted in science, science is rooted in the nature, and evolutions of all things are rooted in the earliest forms and the evolution of a certain thing follows a common rule. Therefore, this question seems unanswerable by philosophy of science, except acknowledging the existence of God. So I just want to stop here.

Drawing on the former argument, fractal geometry could help us to understand the underlying order governed by simple mathematical rules, I have another question: is this process reversible, i.e., could the setting of rules help generate complex ideal orders? In my own field, urban planning and design, I acknowledge that some scholars have studied how, or if it is possible, a set of simple rules may generate ideal urban form (Alexander, 1966; Marshall, 2009). However, city is formed by both controllable and uncontrollable, visible and invisible forces. And the urban form becomes more and more complex, and the urban problems continuously emerge with the increasing complexity of our society. In my view, the study of ideal urban forms, no matter by what means, is something similar to the system dynamics mentioned by Meadows et al. in their book 'The Limits to Growth' - a game of idealism.



空城
6 April, 2014
Film available at //www.youtube.com/watch?v=s65DSz78jW4 ;

 4 ) 以小见大

看完后,这电影给我的感受就是四个字:以小见大。想到生活的一个案例,周末去教小朋友画画,在课间的10分钟,一个小孩冲去厨房,吃了一对鸡翅、半碗饭、一个荷包蛋、一根香肠、还有一瓶酸奶。另外一个小孩躺在沙发上听当季连续剧的主题曲。短短十分钟不算长也不算短,确实是反映了两个小朋友个性上的差别,而这种差别也确实能从他们的体形上很好地反映出来......

 5 ) Hunting the hidden dimension PBS

Loren Carpenter (visualize)-> what the planes might look like in flight.
Fractals - Form, Chance, and Dimension by Benoit Mandelbrot

It's one of the keys to fractal geometry call iteration in mathematicians.

First Mountain and then "Star Trek II" the Wrath of khan.

Self-similarity always zoom in and out the object look the same.

People like the great 19th century Japanese artist Katsushika Hokusai

the mystery of the monsters, a story really begins in later 19 century, Georg Cantor (German)
Created first monsters in 1883, call " Cantor Set."

Another by the Swedish Helge Von Koch, one of the classical Euclidean geometric figures.
in the 1940s, British Scientist Lewis Richardson,
Koch Curve he wrote a very famous article i Science Magazine called " How Long is the Coastline of British."

Dimension
French Gaston Julia

Mandelbrot in IBM

one the combined all of the Julia sets.
f(Z)=Z2+C into a single image. The Mandelbrot Set

Late 1970s, Jhane Barnes
new book "the Fractal Geometry of Nature"
1990, a Boston radio astronomer Nathan Cohen
 have been discovered back in the 1930s.

.
.
.
E=M 3/4

A General Model for the origin of allometric scaling laws in Biology

 6 ) What is Chaos

Go with basic and simple purpose, conducting similarity and virable options which is callled EVOLUTION.

I do like it, from the smoothly math to the real change of the world around us. Similarity is not only a Math but sharing the same vision on physics, from Newton, to Einstein, to the parallel universe.

 7 ) 隐秘的世界

这世界,太多的奥秘,需要去探索
数学,本身就代表着规则
而分形,则给看似无规则的自然世界一个合理的解释
这是西方人的强项

 短评

迷人。無序中尋找秩序。探索與理性的輝光。人類以數學的眼睛觀察和詮釋世界、閱讀自然之書,祛魅所帶來的不是魅力的消解,隨著理解無限的逐層深入、自然神秘面紗的一層層揭開,世界變得愈發迷人。

8分钟前
  • 宇宙夾縫
  • 推荐

大自然的秩序是神的语言

13分钟前
  • 勤劳的小蜘蛛
  • 力荐

数字也有图形之美~~

15分钟前
  • 红糖豆包
  • 力荐

分形几何之应用篇,致敬数学家本华•曼德博先生。

17分钟前
  • 希声
  • 力荐

伟大的分形~(一颗罗马花椰菜引出的科普)

18分钟前
  • Mignon松弛地
  • 力荐

客观事物具有自相似的层次结构,局部与整体在形态、功能、信息、时间、空间等方面具有统计意义上的相似性,称为自相似性。8.2

19分钟前
  • 巴喆
  • 推荐

讲分形几何。不懂数学但看着也挺美。

24分钟前
  • 半透明
  • 推荐

分形几何,迭代。。。。由简单到复杂,最基本逻辑思维。。。。世界历史如此

25分钟前
  • 无鬼斋
  • 推荐

“用分形几何来理解自然的复杂性。”

28分钟前
  • 影树
  • 力荐

片子是好片子,但是我看分形图条件反射式生理不适,头晕恶心

33分钟前
  • 囍弗斯
  • 还行

分形像宇宙的密码,要不总说人类的本质也是“复读机”呢~很好的视角和资料补充。

35分钟前
  • 🥒綠大壯🎶
  • 推荐

海岸线的长度是无法测量的 海岸线的长度取决于你选取的单位长度pbs.org

38分钟前
  • 蛮子
  • 力荐

启发很大!!!!

42分钟前
  • M
  • 力荐

分形真美

43分钟前
  • 不流ᝰ
  • 力荐

fractal could be found in everywhere

45分钟前
  • 积木
  • 力荐

我承认我数学不好。

47分钟前
  • fallingraining
  • 还行

非常棒的一部纪录片。不只揭开了大自然的几何,并说明大自然的几何与人类数学几何的关系。看完片子后,去找了一些关于FRACTAL GEOMETRY 的资料来看。发现这理论说明了次元空间的连贯,这我从没听过的。比如,一些FRACTAL是处于0.68元空间。

48分钟前
  • solow
  • 推荐

深入浅出地介绍了分形几何学的发现和一些应用

51分钟前
  • ζωήιδ
  • 推荐

哇!

56分钟前
  • 野麦麦
  • 力荐

分形理论产生后,不仅影响了数码影片,海岸线测量,服装设计等领域,实际上EX的冠状网络地图也是利用分形原理产生的一种直观的统计方法。@神棍邓 @哀矜者福

57分钟前
  • 推荐

返回首页返回顶部

Copyright © 2023 All Rights Reserved

Baidu
map